https://www.printables.com/model/759734-oreck-vacuum-tube-extension#preview
Replacement tubes are only about $15 but why spend that when I can just print them!
https://www.printables.com/model/759734-oreck-vacuum-tube-extension#preview
Replacement tubes are only about $15 but why spend that when I can just print them!
Excuse my ignorance, I don’t know much about 3D printer material types / filament resistance, but from a few 3D printed cases for small devices I had, isn’t the plastic brittle? Or the joints of layers. Especially for a long cylinder shape where force is going to be applied to. I dropped 2 cases on the floor and they broke in multiple pieces where 2 layers of filament joined. But granted, their thickness was 2-3 millimeters.
Yes normally the tube gets inserted into another tube, which is the stuck into another tube or a foot. This leaves a large moment force directly where the tube is pushed into the other tube. Most likely even with careful use, this tube will break very quickly. The layer joint is the weak spot and the type of plastic most likely isn’t ideal.
Vacuum cleaner parts are made from a high impact plastic, something that’s tough but a bit on the softer side. This way it can take a beating without breaking into a million pieces.
3D printing this is cool and impressive to pull off such a high and narrow print. But practically speaking it makes no sense.
You are correct that injection molded plastic is generally stronger than FDM. I have a well tuned printer, and I use a .6mm nozzle which gives better layer adhesion than the standard .4mm while not having to sacrifice too much detail. I also print in a tent to keep the air warm and gain some effect from annealing the plastic which makes prints slightly stronger.
Phone cases should probably be printed in TPU, which really shouldn’t be shattering. (Unless it’s freaking cold outside.
Maximum drop protection. Would come from a hard shell over a squashy TPU case.
There’s really not that much force on these kinds of things, of greater concern is air flow but it looks like op nailed that.
(If op had taken it down to a smaller diameter, cut outs in the nozzle or somewhere would be be necessary- otherwise the vacuum’s motor has to work too hard to get proper air… and they rely on that flow to cool down.)